Previous Articles Next Articles
Online:
2017-11-20
Published:
2017-11-20
基金资助:
CLC Number:
段俊枝1#,李莹2#,赵明忠1, 魏小春1,任银铃1. NAC转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, DOI: 10.3969/j.issn.1006-8082.2017.06.007 .
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2017.06.007
[1] Hadiarto T, Tran L S P. Progress studies of drought-responsive genes in rice[J]. Plant Cell Rep, 2011, 30 (3):297- 310. [2] Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1/2): 30-44. [3] Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant J, 2011, 68(2): 302-313. [4] Kjaersgaard T, Jensen M K, Christiansen M W, et al. Senescence-associated barley NAC (NAM, ATAF1, 2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain[J]. J Biol Chem, 2011, 286(41): 35 418-35 429. [5] Yang S D, Seo P J, Yoon H K, et al. The Arabidopsis NAC transc ription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. Plant Cell, 2011, 23(6): 2 155-2 168. [6] Zhong R, Lee C, Ye Z H. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis[J]. Mol Plant, 2010, 3(6): 1 087-1 103. [7] Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta-Gene Regul Mech, 2012, 1819(2): 97-103. [8] Tran L S, Nishiyama R, Yamaguchi-Shinozaki K, et al. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach[J]. GM Crops, 2010, 1(1): 32-39. [9] Xia N, Zhang G, Sun Y F, et al. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses[J]. Physiol Mol Plant Pathol, 2010, 74(5/6): 394-402. [10] Xia N, Zhang G, Liu X Y, et al. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses[J]. Mol Biol Report, 2010, 37(8): 3703-3712. [11] Duval M, Hsieh T F, Kim S Y, et al. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily[J]. Plant Mol Biol, 2002, 50(2): 237-248. [12] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247. [13] Tran L S, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16(9): 2 481-2 498. [14] Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci U S A, 2006, 103(35): 12 987-12 992. [15] Redillas C, Jeong J S, Kim Y S, et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnol J, 2012, 10(7): 792-805. [16] Jeong J S, Kim Y S, Baek K H, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1): 185-197. [17] Jeong J S, Kim Y S, Redillas M C, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnol J, 2013, 11(1): 101-114. [18] Chen X, Wang Y, Lü B, et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant Cell Physiol, 2014, 55(3): 604-619. [19] Fang Y, Liao K, Du H, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. J Exp Bot, 2015 , 66(21): 6 803-6 817. [20] Saad A S, Li X, Li H P, et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses[J]. Plant Sci, 2013, 203: 33-40. [21] Liu G, Li X, Jin S, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(1): e86895. [22] An X, Liao Y, Zhang J, et al. Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance[J]. Plant Growth Regul, 2015, 76(2): 211-223. [23] Takasaki H, Maruyama K, Kidokoro S, et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Mol Genet Genomics, 2010, 284(3): 173-183. [24] Gao F, Xiong A, Peng R, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants[J]. Plant Cell Tissue Organ Cult, 2010, 100(3): 255-262. [25] Yokotani N, Ichikawa T, Kondou Y, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis[J]. Planta, 2009, 229(5): 1 065-1 075. [26] Sakuraba Y, Piao W, Lim J H, et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant Cell Physiol, 2015, 56(12): 2 325-2 339. [27] Ochiai K, Shimizu A, Okumoto Y, et al. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice[J]. Plant Physiol, 2011, 156(3): 1 457-1 463. [28] Nakashima K, Tran L S, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J, 2007, 51(4): 617-630. [29] Zheng X, Chen B, Lu G, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochem Biophys Res Commun, 2009, 379(4): 985-989. [30] Hong Y, Zhang H, Huang L, et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Front Plant Sci, 2016, 7: 4. [31] Hu H, You J, Fang Y, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol Biol, 2008, 67(1/2): 169-181. [32] Sun L, Zhang H, Li D, et al. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Mol Biol, 2013, 81(1/2): 41-56. [33] Kaneda T, Taga Y, Takai R, et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death[J]. EMBO J, 2009, 28(7): 926-936. [34] Yoshii M, Shimizu T, Yamazaki M, et al. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to rice dwarf virus[J]. Plant J, 2009, 57(4): 615-625. [35] Yoshii M, Yamazaki M, Rakwal R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant J, 2010, 61(5): 804-815. [36] Lin R M, Zhao W S, Meng X B, et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Sci, 2007, 172: 120-130. [37] Kaneda T, Fujiwara S, Takai R, et al. Identification of genes involved in induction of plant hypersensitive cell death[J]. Plant Biotech, 2007, 24(2): 191-200. |
[1] | WANG Yan, WANG Wang, CAI Jiaxin, ZENG Xin, NI Xinhua, TIAN Jie, TANG Chuang, JING Xiu, ZHOU Miao, WANG Jing, XU Hao, HU Yajie, XING Zhipeng, GUO Baowei, XU Ke, ZHANG Hongcheng. Research Progress on Effects of Nitrogen Fertilizer on Structure and Physicochemical Properties of Rice Starch [J]. China Rice, 2023, 29(4): 1-8. |
[2] | CAO Chunxin, HUANG Hongming, WANG Nuan, LIU Yubing, ZHAO Yongliang, LIU Xinhua. Paddy-upland Rotation Cultivation Technique of “Early Rice - Processing Pepper” [J]. China Rice, 2023, 29(4): 101-103. |
[3] | ZHU Junkai, ZHU Yangang, CAO Jinxia, YANG Dezhen, ZHU Ying, WANG Baohe, ZHANG Yanqiong, YANG Janchun, ZHAO Jun, LIU Xiaobin. Breeding and Application of New High-quality Mid-ripening Japonica Glutinous Rice Variety Jinjingnuo 6288 [J]. China Rice, 2023, 29(4): 104-105. |
[4] | HU Jiangbo, REN Zhengpeng, DING Xiang, WANG Chaoquan, FENG Yang, WANG Xiaojian, ZHANG Xiang, XU Nanfei. Application of Herbicides in Rice Fields and Research Progress on Herbicide-resistant Rice Varieties Breeding [J]. China Rice, 2023, 29(4): 13-19. |
[5] | WANG Yunxiang, XIAN Yunyu, ZHAO Can, WANG Weiling, HUO Zhongyang. Research Progress and Prospect of Slow and Controlled Release Fertilizer Application Technology in Rice [J]. China Rice, 2023, 29(4): 20-26. |
[6] | LI Yixiang, ZHOU Xinqiao, CHEN Dagang, GUO Jie, CHEN Ke, ZHANG Ronjun, RAO Ganshun, LIU Chuanguang, CHEN Youding. Research Progress in Development and Application of High γ-aminobutyric Acid Rice and Its Metric Food [J]. China Rice, 2023, 29(4): 38-44. |
[7] | XUE Lian, DUAN Shengxing, ZHENG Xingfei, YIN Desuo, DONG Hualin, HU Jianlin, WANG Hongbo, ZHA Zhongping, GUO Ying, CAO Peng, XU Deze. Current Situation and Countermeasures of Rice Production in Hubei Province [J]. China Rice, 2023, 29(4): 45-47. |
[8] | WANG Xin, LIU Wei, MA Hongwen, HE Qi, FENG Weidong, ZHANG Yimin, LI Hong, YIN Yanbo. The Course, Problems and Prospects of High-quality Rice Breeding in Ningxia [J]. China Rice, 2023, 29(4): 48-52. |
[9] | SUN Zhiguang, LIU Yan, LI Jingfang, ZHOU Zhenling, XING Yungao, XU Bo, ZHOU Qun, WANG Derong, LU Baiguan, FANG Zhaowei, WANG Baoxiang, XU Dayong. Identification and Evaluation Method for Germinability under Submerged Condition in Rice and Germplasm Screening [J]. China Rice, 2023, 29(4): 53-58. |
[10] | WANG Xingwei, WANG Zhicheng. Effects of Nitrogen Fertilizer Deep Placement Coupled with Straw Incorporation on Leaf Physiological Characteristics, Nitrogen Utilization, and Yield of Rice [J]. China Rice, 2023, 29(4): 59-65. |
[11] | HE Bing, LI Chao, YAN Yongfeng, LIU Yueyue, HE Jingqi, YU Tianhua, WANG Shuai, CHEN Dianyuan, YAN Guangbin. Effects of Rice Straw Returned to the Fields by Water Harrow in Autumn on Soil and Rice Characters [J]. China Rice, 2023, 29(4): 66-71. |
[12] | WEI Liangliang, LIU Shuodan, LI Min, WANG Ying, LI Yanduo, ZHAO Hongbo, Wang Nan. Passivated Effect of Modified Rice Straw Biochar on Cd2+ in Paddy Soil and Rice Plant [J]. China Rice, 2023, 29(4): 72-77. |
[13] | YANG Lifan, TIAN Qinglin, GONG Yurui, LI Zhenyuan, LI Qingmao, LI Qinyan, HUANG Liyu, HU Fengyi, QIN Shiwen. Screening and Identification of Endophytic Bacteria from Oryza minuta and Their Plant Growth-promoting Activities [J]. China Rice, 2023, 29(4): 78-83. |
[14] | DONG Wei, ZHANG Jianping, DENG Wei, XU Yuran, KUI Limei, TU Jian, ZHANG Jianhua, AN Hua, WANG Rui, GU Anyu, ZHANG Jinwen, LU Ying, YANG Liping, GUAN Junjiao, CHEN Yikun, LI Xiaolin. Analysis on Basic Characteristics of Rice Varieties Approved in Yunnan Province from 1983 to 2021 [J]. China Rice, 2023, 29(4): 84-89. |
[15] | LIU Wei, LI Shengnan, SONG Mengqiu, RUAN Shuang, HE Shuihua, XUE Wenxia, LI Hongbin, ZHANG Zhenyu. Current Situation and Development Strategy of Japonica Rice Breeding in China [J]. China Rice, 2023, 29(4): 9-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||